

Introduction to Electrostatic Applicators

Topics

- Electrostatic Gun Theory
- Grounding
- Materials

Setup and Cleanup

Electrostatic Gun Theory

Charged Particles

- All matter contains charged particles
 - Positively charged, (protons)
 - Negatively charged, (electrons)
 - Neutral (neutrons)

Negatively charged particle

- Like charges repel
- Unlike charges attract
- Electrons move easier

Positively charged particle

Neutral particle

Voltage and Current

- Electrical flow can be compared to the fluid flow in a fluid system
- Power supply, like a pump creates flow and pressure
- Force, like pressure is measured voltage
 - Referred to in units of 1000 volts, Kilovolts or (kV)
- Current, like fluid flow is measured in amps
 - Referred to in units of .000001 amps or microamps (µA)
- Conductor, like a pipe allows the flow of electrons
- Insulator, prevents the flow of electrons

Ionization

Electrostatics & Transfer Efficiency

- Factors that effect electrostatic transfer efficiency
 - Distance from gun to grounded part
 - Gun distance should be 10 to 12 inches (250 300 mm) from the target
 - Material conductivity
 - Highly conductive (low resistivity) materials
 - Shape of the target
 - Corners or enclosed area cause a Faraday Cage Effect

Faraday Cage Effect

Resistivity Measurement

- Graco measures resistivity units = megohm centimeters (megohm cm)
- Resistivity reading of 25 megohm cm or above sprays best electrostatically

 Materials between 1 to 25 megohm cm will require a high conductivity fluid tube

Preparation - Paint Resistivity

Grounding

Electrostatic Safety

- Grounding is the most important aspect of electrostatic safety
- All conductive items need to be grounded including:
 - operator
 - gun handle
 - object being sprayed
 - fluid handling equipment (no plastic pail liners)
 - all conductive objects within the spray zone
 - conductive floors (properly cleaned)
 - flammable liquids
 - air hose

Ground Paths

- Grounded gun handle, to ground the operator
- Object being sprayed to earth ground
- Pump grounding
- Electrons can pass through overspray collected on the gun to the grounded handle
- Floor should be clean and conductive
- Proper shoes and personal grounding straps
- All liquids must be stored in grounded containers

Materials

Solvent Based Materials

- Resistivity measurement of a material's conductivity
- Highly resistive solvent based fluids resist current flow, resulting in higher voltage, increasing transfer efficiency
- Low resistive solvent based fluids support current flow, resulting in lower voltage, decreasing transfer efficiency
- Polar solvents like acetone and methyl cellosolve, are low resistivity solvents
- A material supplier can adjust the material resistivity by using different solvents in electrostatic applications

Metallic Finish

- Metallics contain flakes which may be conductive.
 - As high voltage is applied, some elements of the coating may allow current to flow to ground.
 - Not all metallics are subject to this high conductivity condition.
 - The lower applied voltage of the Graco Paint Resistivity Meter (500 volts), can mask this high conductivity condition

High Conductive Materials

- Guns with High Conductivity fluid tube and High Conductive Hose
- Fluids from 1 to 25 megohm/cm² perform well with the high conductivity (HC) gun kit.
- Fluids below 5 megohm/cm² or high viscosity materials should use the high conductive hose.

High Conductive Materials

Waterborne & Electrostatics

- Waterborne materials easily support the flow of electrons
 - As the electron flow increases, tip voltage will decrease causing transfer efficiency to drop

Required isolation

- primary elements: electrostatic gun, fluid hose, fluid source which is isolated from ground
- Voltage discharge control
- Corona charge gun for water based material in a circulation system

Corona Charging

voltage.

PROVEN QUALITY, LEADING TECHNOLOGY.

towards grounded fluid needle.

Electrostatic Systems

AUTOMATIC ELECTROSTATIC SYSTEM

Setup and Cleanup

Preparation - Paint Viscosity

- Viscosity test
 - Viscosity cup
 - Stop watch
 - Tip selection
 - refer to instruction manual

Setting Airspray Fluid Pressure

- Adjust pressure to yield 8 10" straight fluid stream
- Different materials different fluid pressures
- Distance from the part matters, not fluid pressure
- Informer[™] for best accuracy

Fluid Pressure 10 - 20 psi 0.66 - 1.3 bar

Setting Air Assist Fluid Pressure

Start at 400 psi (28 bar) fluid pressure

 Check pattern for consistent particle size

- Increase fluid pressure in 50 psi increments until consistent pattern
- Turn on pattern air to eliminate "tails"

Cleanup and Daily Maintenance

- Turn off electrostatics
- Flushing
- Grounded pail
- Cleaning nozzle and air cap

Don't use metal tools.

Basic Troubleshooting

- Poor spray pattern
- Excessive spray
- Poor wrap
- Operator gets shocked

Thank You